Straty energii występujące podczas zderzenia niesprężystego powodują, że tylko całkowity pęd układu zderzających się ciał jest zachowany (całkowita energia kinetyczna układu nie jest zachowana, ponieważ przyjmuje ona różną wartość przed i po zderzeniu). Aby omówić zderzenie niesprężyste ciał wyobraźmy sobie układ izolowany, w którym dwa ciała o masach m1 i m2, przy czym m1 > m2, poruszają się w dodatnim kierunku osi x (rysunek a).
Zderzenie sprężyste ciał
Zderzenie sprężyste to zderzenie, w którym całkowita energia kinetyczna i całkowity pęd układu zderzających się ciał są zachowane. Pomimo, że zderzenia ciał spotykane na co dzień są zderzeniami niesprężystymi, to jednak niektóre z nich możemy w przybliżeniu traktować jako zderzenia sprężyste. Przykładem takiego zderzenia jest czołowe zderzenie dwóch kul bilardowych, podczas którego prawie cała energia kinetyczna jednej kuli zostaje przekazana początkowo nieruchomej drugiej kuli. W artykule tym zajmiemy się opisem zderzeń sprężystych odbywających się w układzie izolowanym tj. układzie, którego masa nie ulega zmianie w czasie, a wypadkowa sił zewnętrznych działających na układ ciał jest równa zero.
Zderzenie ciał – definicja. Rodzaje zderzeń
Liczne przykłady z życia codziennego, takie jak wbijanie gwoździ, czy kopanie piłki podczas meczu piłki nożnej sugerują nam, że zderzenia ciał występują tylko wtedy, gdy istnieje bezpośredni kontakt pomiędzy nimi. Stwierdzenie to jest wprawdzie słuszne, ale tylko częściowo, ponieważ, jak się za chwilę przekonasz, nie oddaje ono w pełni charakteru tego zjawiska. Zderzenie ciał nie musi bowiem oznaczać procesu ich zetknięcia się, a siły, będące bezpośrednim przejawem oddziaływania ciał, nie muszą być związane z sytuacją, w której dwa lub więcej ciał stykają się wzajemnie.
Zasada zachowania energii

Zasada zachowania energii to jedno z najważniejszych, fundamentalnych praw przyrody, sformułowane w oparciu o wyniki licznych eksperymentów. Energia jest bardzo ważną wielkością fizyczną opisującą aktualny stan ciała lub układu ciał. Znajomość wartości energii ciała w początkowej i końcowej fazie ruchu pozwala na opis tego zdarzenia, bez konieczności posiadania informacji o wartości działających sił, czy drodze, po której ciało się poruszało. Treść zasady zachowania energii dla układu izolowanego, czyli układu ciał niewymieniającego masy i energii z otoczeniem, brzmi następująco:
Zjawisko fotoelektryczne zewnętrzne – zadanie nr 3
Praca wyjścia metalu A wynosi WA = 3 eV, a metalu B WB = 1,5 eV. Jaka będzie prędkość wybitego elektronu wskutek zjawiska fotoelektrycznego dla długości światła λ = 300 nm i λ = 600 nm.
Zjawisko fotoelektryczne zewnętrzne – zadanie nr 2
Elektrodę wykonaną z potasu oświetlono światłem niebieskim o długości fali λ = 400 nm. Czy w tym przypadku zachodzi efekt fotoelektryczny? Jeżeli tak, oblicz energię kinetyczną wybitych elektronów – energię podaj w eV i J. Praca wyjścia dla potasu W = 2,2 eV.