Oblicz prędkość rozchodzenia się w przezroczystym ośrodku składowej fioletowej i czerwonej światła białego. Przyjmij, że w powietrzu długość fali składowej fioletowej jest równa λf = 410 nm, a składowej czerwonej – λcz = 690 nm (zadanie nawiązujące do pytania za milion złotych zadanego w teleturnieju “Milionerzy”).
Współczynnik załamania światła
Współczynnik załamania, oznaczany małą literą n, to wielkość fizyczna opisująca zdolność przezroczystego ośrodka (np. wody, szkła) do załamywania (odchylania) promieni świetlnych. Współczynnik załamania jest wielkością bezwymiarową, co oznacza, że nie posiada jednostki. Im większa wartość współczynnika załamania n ośrodka tym większe odchylenie wiązki światła od początkowego kierunku jej ruchu.
Fale elektromagnetyczne. Widmo fal elektromagnetycznych

Światło słoneczne, światło żarówki, fale radiowe, promieniowanie rentgenowskie – to tylko niektóre przykłady tego samego rodzaju fal – fal elektromagnetycznych (zobacz: Fala – definicja. Rodzaje fal). Dla nas szczególnie istotne jest światło emitowane przez Słońce, ponieważ bez niego życie na Ziemi po prostu nie mogłoby istnieć. W tym artykule podamy definicję fali elektromagnetycznej (w skrócie: fali EM), omówimy widmo fal EM oraz wymienimy niektóre źródła tych fal.
Fale materii. Długość fali de Broglie’a

Wczesne lata dwudziestego wieku ‘przyniosły’ wiele niesamowitych odkryć fizycznych oraz zapoczątkowały zupełnie nowy rozdział w fizyce nazywany mechaniką kwantową albo teorią kwantów. W 1905 roku Albert Einstein wysunął hipotezę, że światło, czyli fala elektromagnetyczna, składa się z pewnych elementarnych porcji (kwantów), które dziś znamy pod nazwą fotonów (zobacz: Definicja kwantu. Foton i jego energia). Liczne eksperymenty potwierdziły słuszność teorii Einsteina, w związku z czym światło zaczęło być traktowane nie tylko jako fala, ale także jako strumień fotonów (tzw. dualizm korpuskularno-falowy). W 1924 roku francuski fizyk Louis de Broglie wysunął przypuszczenie, że materia (np. elektrony) powinna podobnie jak światło wykazywać zarówno własności cząsteczkowe (korpuskularne), jak i falowe. Czy de Broglie miał rację i fale materii rzeczywiście istnieją? Odpowiedź znajdziesz w dalszej części tego artykułu, do którego przeczytania gorąco Cię zachęcam.
Fale mechaniczne – opis. Amplituda, faza, liczba falowa, okres, częstotliwość, częstość kołowa i prędkość fali

W tym artykule zajmiemy się opisem wielkości fizycznych charakteryzujących fale mechaniczne. Za przykład posłuży nam fala poprzeczna wytworzona w linie, czyli fala, w której drgania ośrodka (w tym przypadku drgania elementów liny) zachodzą w kierunku prostopadłym do kierunku rozchodzenia się fali. Wzory, które znajdziesz w dalszej części tego artykułu będzie można zastosować nie tylko do opisu mechanicznych fal poprzecznych, ale także do opisu mechanicznych fal podłużnych (np. fal dźwiękowych). A zatem do dzieła!
Foton. Promieniowanie elektromagnetyczne – zadanie nr 4
Fala elektromagnetyczna o częstotliwości ν = 6 ⋅ 1014 Hz przechodzi z powietrza (współczynnik załamania npow = 1) do szkła (współczynnik załamania nsz = 1,5). Oblicz częstotliwość i długość fali w szkle.